Selective Pairwise Separation Properties as Productive Properties for Product of Two Bitopological Spaces

S. Mishra* and Harjot Singh
Department of Mathematics
School of Chemical Engineering and Physical Sciences
Lovely Professional University, Phagwara-144411, Punjab, India

Abstract

The motive of this paper is to investigate preservation of parwise separation properties for bispaces as namely $p-T_{1}$-bispace, $p-T_{2}$-bispace. p-regular bispace, p-completely regular bispace and $p-T_{3 \frac{1}{2}}$ bispace under the cartesion products. Furthermore, we also investigate productive property of

 totally disconnected bispace.
Introduction and Preliminaries

As far as the development of bitopological spaces (briefly call bisapce) are concerned, in 1963 Kelly [2] introduced the bisapce and studies about non-symmetric functions for two arbitrary topologies on set. Further, in the same piece of work, the new concepts of pairwise Hausdorff, pairwise regular and pairwise normal, corresponding to the idea of separation axioms of topological space, are introduced in bisapce and thoroughly investigated. Patty [1], Weston [3], Reilly and Ivan [4], Pervin [9], Kim [8], Fletcher and Hoyle [7], Swart [5], Saegrove [6] and many other topologists carried out further research in the field of compactness, connectedness, total disconnectedness and more detailed separation properties in bitopological spaces.

In this paper, our main focus is on listing of selective separation properties and the concept of total disconnectedness for bisapce and to examine how these listed properties are productive properties under the product of two bisapces. First time, the idea of product of given family of bisapce is discussed independently
by Swart [5] and Saegrove [6]. The solo motive of introducing product space is to obtain generalization of Tychnoff's theorem.

We use following notation in the paper. The triplet $\left(X, \tau_{1}, \tau_{2}\right)$ a bisapce with two topologies τ_{1} and τ_{2} on X. The set $\tau_{1}-C(A)$ and $\tau_{2}-C(A)$ are closure of subset A of space X w.r.t. τ_{1} and τ_{2} respectively. The $\tau_{1}-$ open (τ_{1}-closed) and τ_{2}-open (τ_{2}-closed) are open (closed) set in a bisapces X w.r.t. τ_{1} and τ_{2} respectively. The word pairwise is denoted by p so for example pairwise T_{1} property is mentioned as as $p-T_{1}$. Now we present some important definitions and results from the literatures $[2,4,6]$ that help to understand our main concepts.

A bisapce $\left(X, \tau_{1}, \tau_{2}\right)$ is

1. $p-T_{1}$, when for arbitrary $x, y \in X, \exists$ sets G and H s.t. $x \in G, y \notin G$ and $y \in H, x \notin H$. Where x and y are distinct and G and H are open sets w.r.t. τ_{1} and τ_{2} respectively.
2. $\quad p-T_{2}$, when for arbitrary $x, y \in X, \exists$ sets G and H s.t. $x \in G, y \in H$ and $G \cap H=\phi$. Where x and y are distinct and G and H are open sets w.r.t. τ_{1} and τ_{2} respectively.
3. regular w.r.t. τ_{2} if $\forall x \in X$ and for $\forall \tau_{1}$-closed set A s.t. $x \notin A, \exists$ sets G and H s.t. $x \in G, A \subseteq H$ with $G \cap H=\phi$. Where and G and H are open sets w.r.t. τ_{1} and τ_{2} respectively.
4. p-regular if τ_{1} is regular w.r.t τ_{2} and τ_{2} is regular with respect to τ_{1}.
5. $p-T_{3}$ if X is p-regular and $p-T_{1}$.
6. p-completely regular if $\forall \tau_{1}$-closed set F_{1} and $\forall a \notin F_{1}, \exists$ a p-continuous map $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow$ (I, R, L) s.t. $f(a)=1$ and $f\left(F_{1}\right)=\{0\}$, and $\forall \tau_{2}$-closed set F_{2} and for each point $b \notin F_{2}, \exists$ a p-continuous map $f_{1}:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow(I, R, L)$ s.t. $f_{1}(b)=0$ and $f_{1}\left(F_{2}\right)=\{1\}$. Where $I=[0,1]$ is unit interval.
7. $\quad p-T_{3 \frac{1}{2}}$ if it is pairwise completely regular and $p-T_{1}$.

Definition [5]. The bispace $\left(\boldsymbol{X}, \boldsymbol{\tau}_{\mathbf{1}}, \boldsymbol{\tau}_{\mathbf{2}}\right)$ is totally disconnected iff for arbitrary $\boldsymbol{x} \neq \boldsymbol{y} \in \boldsymbol{X}, \exists$ a $\boldsymbol{\tau}_{\mathbf{1}}$-open set \boldsymbol{G} and a $\boldsymbol{\tau}_{\mathbf{2}}$-open set \boldsymbol{H} s.t. $\boldsymbol{x} \in \boldsymbol{G}, \boldsymbol{y} \in \boldsymbol{H}$ with $\boldsymbol{X}=\boldsymbol{G} \cup \boldsymbol{H}$ and $\boldsymbol{G} \cap \boldsymbol{H}=\phi$.

Definition [6]. For a given family of bispace $\left\{\left(\boldsymbol{X}_{\boldsymbol{i}}, \boldsymbol{\tau}_{\alpha}, \boldsymbol{\tau}_{\alpha}{ }_{\alpha}\right)\right\}$, the product of this family of bispace is denoted by $\pi_{\alpha}\left(\boldsymbol{X}_{\alpha}, \boldsymbol{\tau}_{\alpha}, \boldsymbol{\tau}_{\alpha}^{\prime}\right)$ which is also a bispace given by $\left(\boldsymbol{X}, \boldsymbol{\tau}_{\mathbf{1}}, \boldsymbol{\tau}_{\mathbf{2}}\right)$. Where, $\boldsymbol{\tau}_{\mathbf{1}}$ and $\boldsymbol{\tau}_{\mathbf{2}}$ are product topologies for bispace \boldsymbol{X} for families $\left\{\left(\boldsymbol{X}_{\boldsymbol{\alpha}}, \boldsymbol{\tau}_{\boldsymbol{\alpha}}\right)\right\}$ and $\left\{\left(\boldsymbol{X}_{\boldsymbol{\alpha}}, \boldsymbol{\tau}_{\boldsymbol{\alpha}}{ }_{\boldsymbol{\alpha}}\right)\right\}$ respectively.

With the help of this definition, we are defining product of two bispace $\left(\boldsymbol{X}, \boldsymbol{\tau}_{1}, \boldsymbol{\tau}_{2}\right)$ and $\left(\boldsymbol{Y}, \boldsymbol{\tau}_{3}, \boldsymbol{\tau}_{4}\right)$ as $\left(\boldsymbol{X}, \boldsymbol{\tau}_{\mathbf{1}}, \boldsymbol{\tau}_{\mathbf{2}}\right) \times\left(\boldsymbol{Y}, \boldsymbol{\tau}_{\mathbf{3}}, \boldsymbol{\tau}_{\mathbf{4}}\right)=\left(\boldsymbol{X} \times \boldsymbol{Y}, \boldsymbol{\tau}, \boldsymbol{\tau}^{\prime}\right) . \quad$ Where, $\boldsymbol{\tau}$ is topology on $\boldsymbol{X} \times \boldsymbol{Y}$ with basis $\left\{\boldsymbol{G}_{\mathbf{1}} \times \boldsymbol{G}_{\mathbf{3}}: \boldsymbol{G}_{\mathbf{1}} \in\right.$ $\boldsymbol{\tau}_{\mathbf{1}}$ and $\left.\boldsymbol{G}_{\mathbf{3}} \in \boldsymbol{\tau}_{\mathbf{3}}\right\}$ and $\boldsymbol{\tau}$ ' is topology on $\boldsymbol{X} \times \boldsymbol{Y}$ with basis $\left\{\boldsymbol{G}_{\mathbf{2}} \times \boldsymbol{G}_{\mathbf{4}}: \boldsymbol{G}_{\mathbf{2}} \in \boldsymbol{\tau}_{\mathbf{2}}\right.$ and $\left.\boldsymbol{G}_{\boldsymbol{4}} \in \boldsymbol{\tau}_{\boldsymbol{4}}\right\}$.

Definition [6]. Any function f from $\left(X, \tau_{1}, \tau_{2}\right)$ into $\left(Y, \tau_{1}^{\prime}, \tau^{\prime}{ }_{2}\right)$ is p-continuous if the induced functions from $\left(X, \tau_{1}\right)$ into $\left(Y, \tau^{\prime}{ }_{1}\right)$ and $\left(X, \tau_{2}\right)$ into $\left(Y, \tau^{\prime}{ }_{2}\right)$ are pair continuous.

Theorem[6]. For product topological space $\pi_{\alpha}\left(X_{\alpha}, \tau_{\alpha}, \tau^{\prime}{ }_{\alpha}\right)$, the projection map $P_{\alpha}: \pi_{\alpha}\left(X_{\alpha}, \tau_{\alpha}, \tau_{\alpha}^{\prime}\right) \rightarrow$ ($X_{\alpha}, \tau_{\alpha}, \tau_{\alpha}^{\prime}$) is pair onto, pair continuous and pair open.

Main Results

In this section we are going to investigate preservation of parwise separation properties for bispaces as namely $p-T_{1}$-bispace, $p-T_{2}$-bispace. p-regular bispace, p-completely regular bispace and $p-T_{3 \frac{1}{2}}$ bispace under the cartesion products. Furthermore, we also investigate productive property of totally disconnected bispace.

Lemma 1. A bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is $p-T_{1}$ iff every singleton subset of $\left(X, \tau_{1}, \tau_{2}\right)$ is a p-closed set.
Theorem 2. The $p-T_{1}$ bispace is closed w.r.t to cartesian product.

Proof. Consider two $p-T_{1}$ bispaces $\left(X, \tau_{1}, \tau_{2}\right)$ and $\left(Y, \tau_{3}, \tau_{4}\right)$. Let $\left(X, \tau_{1}, \tau_{2}\right) \times\left(Y, \tau_{3}, \tau_{4}\right)=\left(X \times Y, \tau, \tau^{\prime}\right)$.
Choose any singleton subset $\{(x, y)\}$ from product bispace $\left(X \times Y, \tau, \tau^{\prime}\right)$. As bispace $\left(X, \tau_{1}, \tau_{2}\right)$ and $\left(Y, \tau_{3}, \tau_{4}\right)$ are pairwise T_{1}, therefore $\{x\}$ is a paiwise closed set in $\left(X, \tau_{1}, \tau_{2}\right)$ and $\{y\}$ is p-closed in $\left(Y, \tau_{3}, \tau_{4}\right)$. Consequently, $(X-\{x\}) \times(Y-\{y\})$ is a τ-open as well as τ-open set. Evidently, $(X \times Y)-$ $\{(x, y)\}$ is a τ-open as well as τ^{\prime}-open set. Equivalently, $\{(x, y)\}$ is a τ-closed as well as τ^{\prime}-closed set in ($X \times Y, \tau, \tau^{\prime}$). Thus, product space is $p-T_{1}$.

Theorem 3. The $p-T_{2}$ bispace is closed w.r.t. to cartesian product.

Proof. Let $\left(X, \tau_{1}, \tau_{2}\right)$ and $\left(Y, \tau_{3}, \tau_{4}\right)$ are two $p-T_{2}$ bispacse with $\left(X, \tau_{1}, \tau_{2}\right) \times\left(Y, \tau_{3}, \tau_{4}\right)=\left(X \times Y, \tau, \tau^{\prime}\right)$. Consider two arbitrary distinct members $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ from $\left(X \times Y, \tau, \tau^{\prime}\right)$. Let us take $x_{1} \neq x_{2}$. Now, $x_{1} \neq x_{2}$ in a $p-T_{2}$ bispace space $\left(X, \tau_{1}, \tau_{2}\right)$. Therefore, \exists a τ_{1}-open set G_{1} and a τ_{2}-open set G_{2} s.t. $x_{1} \in G_{1}$ and $x_{2} \in G_{2}$ with $G_{1} \cap G_{2}=\phi$. Evidently, $\left(x_{1}, y_{1}\right) \in G_{1} \times Y$, a τ-open set in $X \times Y$. Also, $\left(x_{2}, y_{2}\right) \in G_{2} \times Y$, a τ^{\prime}-open set in $X \times Y$. Further, $\left(G_{1} \times Y\right) \cap\left(G_{2} \times Y\right)=\left(G_{1} \cap G_{2}\right) \times Y=\phi$.

Theorem 4. The p-regular property is a productive property for product of two bispaces.

Proof. Suppose that two bispaces $\left(X, \tau_{1}, \tau_{2}\right)$ and $\left(Y, \tau_{3}, \tau_{4}\right)$ are p-regular. Let $\left(X \times Y, \tau, \tau^{\prime}\right)$ is product bispaces of given two bispaces, i.e. $\left(X, \tau_{1}, \tau_{2}\right) \times\left(Y, \tau_{3}, \tau_{4}\right)=\left(X \times Y, \tau, \tau^{\prime}\right)$. Consider arbitrary member $(x$, $y)$ from product space $\left(X \times Y, \tau, \tau^{\prime}\right)$ and arbitrary τ-closed set F with $(x, y) \notin F . A s(X \times Y)-F$ is τ-open and projection mappings $P_{1}:\left(X \times Y, \tau, \tau^{\prime}\right) \rightarrow\left(X, \tau_{1}, \tau_{2}\right)$ and $P_{1}:\left(X \times Y, \tau, \tau^{\prime}\right) \rightarrow\left(Y, \tau_{3}, \tau_{4}\right)$ are pair open, therefore $P_{1}((X \times Y)-F)$ is τ_{1}-open and $P_{2}((X \times Y)-F)$ is τ_{3}-open. Consequently, $X-P_{1}(F)$ is τ_{1}-open and $X-P_{2}(F)$ is τ_{3}-open. As $(x, y) \in(X \times Y)-F$, therefore $P_{1}(x, y) \in X-P_{1}(F)$ and $P_{2}(x, y) \in Y-$ $P_{2}(F)$. Since, $P_{1}(F)$ is τ_{1}-closed and $x \notin P_{1}(F)$ and also $\left(X, \tau_{1}, \tau_{2}\right)$ is p-regular. Therefore, \exists a τ_{1}-open set G_{1} and a τ_{2}-open set H_{2} s.t. $x \in G_{1}$ and $P_{1}(F) \subseteq H_{2}$ with $G_{1} \cap H_{2}=\phi$. Similarly, \exists a τ_{3}-open set G_{3} and a τ_{4}-open set H_{4} s.t. $y \in G_{3}$ and $P_{2}(F) \subseteq H_{4}$ with $G_{3} \cap H_{4}=\phi$. Then, $F \subseteq P_{1}-\left(H_{2}\right)$ and $F \subseteq P_{2}-\left(H_{4}\right)$ or $F \subseteq H_{2} \times Y$ and $F \subseteq X \times H_{4}$. It means $F \subseteq\left(H_{2} \times Y\right) \cap\left(X \times H_{4}\right)=H_{2} \times H_{4}$, a τ '-open set. We see that $(x, y) \in G_{1} \times G_{3}$, a τ-open set and $F \subseteq H_{2} \times H_{4}$, a τ '-open set with $\left(G_{1} \times G_{3}\right) \cap\left(H_{2} \times H_{4}\right)=\phi$.

Remark 1. By using above theorem it can be prove that product of two $p-T_{3}$ bispace is also $p-T_{3}$.

Theorem 5. The p-completely regular property is a productive property for product of two bispaces.

Proof. Let $\left(X, \tau_{1}, \tau_{2}\right)$ and $\left(Y, \tau_{3}, \tau_{4}\right)$ are two p-completely regular bispaces. Suppose that $\left(X \times Y, \tau, \tau^{\prime}\right)$ is product bispaces of given two bispaces, i.e. $\left(X, \tau_{1}, \tau_{2}\right) \times\left(Y, \tau_{3}, \tau_{4}\right)=\left(X \times Y, \tau, \tau^{\prime}\right)$. Consider arbitrary member (x, y) from product space $\left(X \times Y, \tau, \tau^{\prime}\right)$ and arbitrary τ-closed set F with $(x, y) \notin F$. Since, $(x, y) \in(X \times Y)-F$, a τ-open set, therefore $\exists G_{1} \times G_{3}$, where G_{1} is a τ_{1}-open set and G_{3} is a τ_{3}-open set s.t. $(x, y) \in G_{1} \times G_{3} \subseteq(X \times Y)-F$. Evidently, $x \in G_{1} \subseteq X$ or $x \notin X-G_{1}$, a τ_{1}-close set and $\left(X, \tau_{1}, \tau_{2}\right)$
is completely regular. Therefore, \exists a p-continuous function $f_{1}:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow([0,1], R, L)$ s.t. $f_{1}(x)=$ 1 and $f_{1}\left(X-G_{1}\right)=\{0\}$. Similarly, for $y \notin Y-G_{3}$, a τ_{3}-closed set, \exists a p-continuous function $f_{2}:\left(Y, \tau_{3}, \tau_{4}\right) \rightarrow([0,1], R, L)$ s.t. $f_{2}(y)=1$ and $f_{2}\left(Y-G_{3}\right)=\{0\}$. Since, projection mappings $P_{1}:(X \times$ $\left.Y, \tau, \tau^{\prime}\right) \rightarrow\left(X, \tau_{1}, \tau_{2}\right)$ and $P_{2}:\left(X \times Y, \tau, \tau^{\prime}\right) \rightarrow\left(Y, \tau_{3}, \tau_{4}\right)$ are p-continuous. Therefore, $h_{1}=f_{1} o P_{1}:(X \times$ $\left.Y, \tau, \tau^{\prime}\right) \rightarrow([0,1], R, L) \quad$ and $\quad h_{2}=f_{2} o P_{2}:\left(X \times Y, \tau, \tau^{\prime}\right) \rightarrow([0,1], R, L) \quad$ are p-continuous. Now, $h_{1}(x, y)=f_{1}\left(P_{1}(x, y)\right)=f_{1}(x)=1$ and $h_{2}(x, y)=f_{2}\left(P_{2}(x, y)\right)=f_{2}(y)=1$. Also, for any $(u, v) \in F$ means $(u, v) \notin G_{1} \times G_{3}$, i.e., $u \notin G_{1}$ or $v \notin G_{3}$. Thus, $h_{1}(u, v)=f_{1}\left(P_{1}(u, v)\right)=f_{1}(u)=0$ or $h_{2}(u, v)=$ $f_{1}\left(P_{2}(u, v)\right)=f_{2}(v)=0 . \quad$ Choose $\quad h=\min \left\{h_{1}, h_{2}\right\} . \quad$ Then, $\quad h:\left(X \times Y, \tau, \tau^{\prime}\right) \rightarrow([0,1], R, L) \quad$ is p-continuous with $h(x, y)=1$ and $h(u, v)=0$ or $h(F)=\{0\}$. Similarly, we can prove the result by considering arbitrary member $\left(x^{\prime}, y^{\prime}\right)$ from product space $\left(X \times Y, \tau, \tau^{\prime}\right)$ and arbitrary τ^{\prime}-closed set F^{\prime} with $(x, y) \notin F^{\prime}$.

Remark 2. By using above theorem it can be proved that product of two $p-T_{3 \frac{1}{2}}$ is also $-T_{3 \frac{1}{2}}$.

Theorem 6. The totally disconnected bispace is closed w.r.t. cartesian product.

Proof. The spaces $\left(X, \tau_{1}, \tau_{2}\right)$ and $\left(Y, \tau_{3}, \tau_{4}\right)$ are two totally disconnected bispaces with $\left(X, \tau_{1}, \tau_{2}\right) \times$ $\left(Y, \tau_{3}, \tau_{4}\right)=\left(X \times Y, \tau, \tau^{\prime}\right)$. Consider two arbitrary distinct members $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ from $(X \times$ $\left.Y, \tau, \tau^{\prime}\right)$. Choose $x_{1} \neq x_{2}$. As, $x_{1} \neq x_{2}$ in a totally disconnected bispaces space $\left(X, \tau_{1}, \tau_{2}\right)$. So, \exists a τ_{1}-open set G_{1} and a τ_{2}-open set G_{2} such that with $X=G_{1} \cup G_{2}$ with $x_{1} \in G_{1}, x_{2} \in G_{2}$ and $G_{1} \cap G_{2}=\phi$. Evidently, $\left(x_{1}, y_{1}\right) \in G_{1} \times Y$, a τ-open set in $X \times Y$. Also, $\left(x_{2}, y_{2}\right) \in G_{2} \times Y$, a τ^{\prime}-open set in $X \times Y$. Further, $\left(G_{1} \times Y\right) \cup$ $\left(G_{2} \times Y\right)=\left(G_{1} \cup G_{2}\right) \times Y=X \times Y$ and $\left(G_{1} \times Y\right) \cap\left(G_{2} \times Y\right)=\left(G_{1} \cap G_{2}\right) \times Y=\phi$.

Conclusion. In this paper we study about pairwise separation properties namely, $p-T_{1}, p-T_{2}$, p-regular, p-completely regular, $p-T_{3 \frac{1}{2}}$ for bispace and proved that these are preserve during the cartesion product of such corresponding spaces. Furthermore, totally disconnectedness is productive property under product of two bispaces.

References

[1] C. W. Patty, Bitopological spaces, Duke Math. J., 34 (1967) 387-392.
[2] J. C. Kelly, Bitopological Spaces, London Math.Soc.Proc., 13(3) (1963) 71-89.
[3] J. D. Weston, On Comparison of Topologies, J. London Math. Soc., 52 (1957) 342-554.
[4] J. Reilly and L.Ivan, Quasi-Gauges, Quasi-Uniformities and Bitopological Spaces, Unpublished Ph.D. Thesis, Library, University of Illinois (1970).
[5] J. Swart, Total disconnectedness in bitopological spaces and product bitopological spaces, Proc. Kon. Ned. Wetensch., A74 (2) (1971), 135-145.
[6] M., J. Saegrove, On Bitopological Spaces, Ph. D. Thesis, Iowa State University, (1971), 150.
[7] P. Fletcher, H. B. Hoyle III, and C. W. Patty, The Comparison of Topologies, Duke Math.J., 36 (1969) 325-331.
[8] Y. W. Kim, Pairwise Compactness, Publ. Math. Debrecen, 15 (1968) 87-90.
[9] W. Pervin, Connectedness In Bitopological Spaces, Nederl. Akad. Wetensch. Proc. Ser., A70, Indag. Math., 29 (1967) 369-372.

